Incorporating invariants in Mahalanobis distance based classifiers: Application to Face Recognition

نویسندگان

  • Andrew M. Fraser
  • Nicolas W. Hengartner
  • Kevin R. Vixie
  • Brendt E. Wohlberg
چکیده

We present a technique for combining prior knowledge about transformations that should be ignored with a covariance matrix estimated from training data to make an improved Mahalanobis distance classifier. Modern classification problems often involve objects represented by high-dimensional vectors or images (for example, sampled speech or human faces). The complex statistical structure of these representations is often difficult to infer from the relatively limited training data sets that are available in practice. Thus, we wish to efficiently utilize any available a priori information, such as transformations of the representations with respect to which the associated objects are known to retain the same classification (for example, spatial shifts of an image of a handwritten digit do not alter the identity of the digit). These transformations, which are often relatively simple in the space of the underlying objects, are usually nonlinear in the space of the object representation, making their inclusion within the framework of a standard statistical classifier difficult. Motivated by prior work of Simard et al., we have constructed a new classifier which combines statistical information from training data and linear approximations to known invariance transformations. When tested on a face recognition task, performance was found to exceed by a significant margin that of the best algorithm in a reference software distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying the Mahalanobis-Taguchi System to Vehicle Ride

The Mahalanobis Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. The Mahalanobis Taguchi System is of interest because of its reported accuracy in forecasting small, correlated data sets. Th...

متن کامل

A Realtime Face Recognition system using PCA and various Distance Classifiers

Face recognition is an important application of Image processing owing to it’s use in many fields. The project presented here was developed after study of various face recognition methods and their efficiencies. An effective and real time face recognition system based on OpenCV and C++ is developed in the project. The system was tested on YALE Face database B and ORL Face Database. The recognit...

متن کامل

The Performance of Two Deformable Shape Models in the Context of the Face Recognition

In this paper we compare the performance of face recognition systems based on two deformable shape models and on three classification approaches. Face contours have been extracted by using two methods: the Active Shapes and the Bayesian Tangent Shapes. The Normal Bayes Classifiers and the Minimum Distance Classifiers (based on the Euclidean and Mahalanobis metrics) have been designed and then c...

متن کامل

An Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition

The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...

متن کامل

Identifying Useful Variables for Vehicle Braking Using the Adjoint Matrix Approach to the Mahalanobis-Taguchi System

The Mahalanobis Taguchi System (MTS) is a diagnosis and forecasting method for multivariate data. Mahalanobis distance (MD) is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. MTS is of interest because of its reported accuracy in forecasting small, correlated data sets. This is the type o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003